2-N-Methylexcentricine, a New Alkaloid from Roots of Stephania excentrica

Jing-Zhen Deng* and Shou-Xun Zhao

Department of Phytochemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China

Received March 20, 19968

2-*N*-methylexcentricine (**2**), a new alkaloid related to excentricine, was isolated together with 10 other known alkaloids from the roots of *Stephania excentrica*. The structure of **2** was elucidated by spectroscopic analysis.

In the previous paper,¹ we reported that excentricine (1), a new alkaloid with a novel tetrahydroisoguinoline skeleton possessing an eight-membered oxygen-heterocyclic ring, was isolated from the roots of Stephania excentrica H. S. Lo (Menispermaceae), along with eight known alkaloids: roemerine, 4-demethylhasubanonine, oxoputerine, oxoanolobine, isoboldine, homoaromoline, (+)-coclaurine, and sinococuline. The structure of excentricine was established as 1. Our continuous phytochemical investigation of the roots of S. excentrica afforded 2-N-methylexcentricine (2), a new alkaloid with the same skeleton as 1, and a known alkaloid 2-Nmethylcoclaurine. This paper deals with the isolation of excentricine (1), 2-N-methylexcentricine (2), and nine other known alkaloids, and with the structural elucidation of 2.

2-N-methylexcentricine (2) was obtained as needles from the alkaloidal fraction of the roots of S. excentrica by chromatography on Si gel. Its HRMS gave the molecular formula C₁₉H₂₅O₅N. The IR, ¹H- and ¹³C-NMR spectra were similar to those of excentricine (1), suggesting that 1 and 2 had the same skeleton. The ¹H-NMR spectrum of **2** showed an additional *N*-methyl group at δ 2.58 (3H, s) and an upfield proton at δ 4.08 (d, J = 6.0 Hz, H-1) as compared with **1** (Table 1). The ¹³C-DEPT spectrum of **2** displayed a methyl carbon at δ 36.83 (g) and a downfield carbon at δ 61.51 (d, C-1) in contrast to 1. On the basis of this evidence, there is an *N*-methyl group in **2**, instead of the NH found in **1**. The CD spectrum of **2** resembled that of **1**, showing the same configuration as 1. All of the other known alkaloids were identified by comparison of their mp, $[\alpha]_D$ (and CD), IR, UV, ¹H NMR, and ¹³C NMR with literature data.2-7

Table 1. $^{1}\text{H-}$ (400 MHz) and $^{13}\text{C-}$ (100 MHz) NMR Data (CDCl₃, $\delta)$ for 1 and 2

	1		2	
position	$\delta_{ m H}$ (<i>J</i> , Hz)	$\delta_{\rm C}$	δ _H (<i>J</i> , Hz)	$\delta_{\rm C}$
1	4.90 (d, $J = 6.2$)	54.99 d	4.08 (d, $J = 6.0$)	61.51 d
3	3.75 (m)	44.64 t	3.84 (m)	46.71 t
	3.45 (ddd, J =		3.47 (ddd, J =	
	12.5, 12.5, 6.8)		11.8, 11.8, 6.0)	
4	3.22 (ddd, $J =$	26.21 t	3.21 (ddd, $J =$	27.05 t
	12.5, 12.5, 6.8)		11.8, 11.8, 6.0)	
	3.08 (ddd, J =		3.11 (ddd, J =	
-	12.5, 6.8, 1.5)		11.8, 6.0, 2.1)	
4a	/ \	130.44 s	/ .	130.55 s
5	6.86 (s)	114.07 d	6.84 (s)	115.01 d
6		155.37 s		155.40 s
7		145.66 s		146.05 s
8		125.82 s		125.21 s
8a		118.07 s		119.22 s
9		147.72 s		147.83 s
10	6.14 (t, $J = 7.8$)	116.75 d	6.16 (t, $J = 7.9$)	116.12 d
11	2.82 (ddd, $J =$	35.97 t	2.80 (ddd, $J =$	35.04 t
	11.4, 11.4, 7.8)		11.2, 11.2, 7.9)	
	2.16 (m)		2.18 (m)	
12	3.57 (m)	71.55 d	3.41 (m)	72.35 d
13	2.21 (m, 2H)	52.13 t	2.34 (m, 2H)	51.41 t
14	4.00 (br t, $J = 9.6$)	67.75 d	4.09 (br t, $J = 9.2$)	68.32 d
15	4.13 (dd, $J =$	79.65 d	4.22 (dd, J=	80.56 d
	9.6, 6.2)		9.2, 6.0)	
MeO-6	3.85 (s)	57.26 q	3.86 (s)	57.76 q
MeO-7	3.74 (s)	61.45 q	3.73 (s)	62.11 q
2- <i>N</i> -CH ₃			2.58 (s)	36.83 q

Experimental Section

General Experimental Procedures. Melting points were determined on a Microscopic apparatus and are uncorrected. The optical rotation was measured on a JASCO DIP-181 autopolarimeter. The UV spectra were registered on a Shimadzu UV-300 spectrophotometer, and IR spectra, on a Shimadzu IR-400. ¹H- and ¹³C-NMR spectra were recorded on a JNM-GX 400 instrument. The CD spectra were obtained on a JASCO J-500A instrument, using MeOH as solvent.

Plant Material. The roots of *Stephania excentrica* H. S. Lo were collected in July 1989, from the southwest of Jiangxi Province, People's Republic of China. The plant was authenticated by Professor H-S. Lo, South China Institute of Botany, Academia Sinica, Guangzhou, where a voucher specimen is deposited.

Extraction and Isolation. The roots of *S. excentrica* were air-dried for 2 weeks and ground into a powder. The powder (8 kg) was extracted by percolation with EtOH at room temperature. The EtOH extract was evaporated under reduced pressure and the residue treated with 2.0% HCl. The mixture was filtered and the filtrate extracted with CHCl₃ to give part A. The filtrate was then basified with NH₄OH and extracted with CHCl₃ to yield Part B, and then with *n*-BuOH to

^{*} To whom correspondence should be addressed: Department of Chemistry, University of Virginia, Charlottesville, VA 22901. $^{\otimes}$ Abstract published in *Advance ACS Abstracts*, February 15, 1997.

afford part C. Part A (50 g) was subjected to chromatography on Si gel and eluted with petroleum-EtOAc (100:1-50:100) to provide roemerine (25 mg, 0.000 31%), 4-demethylhasubanonine (25 g, 0.31%), oxoputerine (8 mg, 0.0001%), oxoanolobine (15 mg, 0.000 19%), and isoboldine (12 mg, 0.000 15%). Part B (25 g) and part C (20 g) were separately placed on Si gel columns, and both were eluted with CHCl₃ gradually enriched with MeOH, and consequently, part B furnished homoaromoline (1.2 g, 0.015%), 2-*N*-methylexcentricine (**2**) (15 mg, 0.000 15%), and excentricine (**1**) (45 mg, 0.000 56%), while part C gave 2-*N*-methylcoclaurine (9 mg, 0.000 11%), (+)-coclaurine (38 mg, 0.000 48%), and sinococuline (125 mg, 0.0016%).

Excentricine (1): obtained as needles (45 mg) from Me₂CO–MeOH; mp 195–196 °C; $[\alpha]^{22}_{D}$ +261° (*c* 0.03, MeOH); UV (MeOH) λ_{max} (log ϵ) 228 (4.31), 263 (4.02), 302 (3.23) nm; IR (dry film) ν_{max} 3350, 3300, 1650, 1600, 1500, 1380, 1360, 1300, 1080, 1045, 1100, 840 cm⁻¹; EIMS m/z [M]⁺ 333 (42), 332 (19), 316 (20), 302 (46), 274 (35), 260 (100), 230 (69), 192 (15); CD (MeOH) $\Delta \epsilon$ (nm) +19.2 (220), +14.4 (260), +0.8 (306).

2-*N***-Methylexcentricine (2)**: obtained as needles (15 mg) from CHCl₃; mp 215–217 °C; $[\alpha]^{18}_{D}$ +266° (*c*

0.02, MeOH); UV (MeOH) λ_{max} (log ϵ) 228 (4.42), 264 (4.02), 305 (3.51) nm; IR ν_{max} 3350, 1650, 1600, 1480, 1390, 1365, 1300, 1145, 1080, 1050, 1100, 850 cm⁻¹; HRMS m/z C₁₉H₂₅O₅N (obsd 347.1782, calcd for C₁₉H₂₅O₅N) 347.1733), EIMS m/z [M]⁺ 347 (48) (C₁₉H₂₅O₅N), 346 (25), 330 (23), 329 (56), 274 (100), 244 (58), 206 (35); ¹H- and ¹³C-NMR data, see Table 1; CD $\Delta\epsilon$ (nm) +18.4 (221), +14.8 (262), +1.0 (306).

References and Notes

- (1) Deng, J-Z.; Zhao, S-X.; Miao, Z.-C. Nat. Prod. Lett. **1993**, 2, 283–286.
- (2) Guinaudeau, H.; Leboeuf, M.; Cavé, A. Lloydia 1975, 38, 275– 338.
- (3) Kupchan, S. M.; Suffness, M. I.; White, D. N. J.; McPhall, A. T.; Sim, G. A. J. Org. Chem. 1968, 33, 4529–4532.
- (4) Hsu, C. C.; Dobberstein, R. H.; Cordell, G. A.; Farnsworth, N. R. Lloydia 1977, 40, 152–156.
- (5) Guinaudeau, H.; Freyer, A. J.; Shamma, M. Nat. Prod. Repts. 1986, 477–488.
- (6) Johns, S. R.; Lamberton, J. A.; Sioumis, A. A. Austral. J. Chem. 1967, 20, 1729–1730.
- (7) Itokawa, H.; Tsuruoka, S.; Takeya, K.; Mori, N.; Sonobe, T.; Kosemura, S.; Hamanaka, T. *Chem. Pharm. Bull.* **1987**, *35*, 1660–1662.

NP960371M